Deep Hashing: A Joint Approach for Image Signature Learning
نویسندگان
چکیده
Similarity-based image hashing represents crucial technique for visual data storage reduction and expedited image search. Conventional hashing schemes typically feed handcrafted features into hash functions, which separates the procedures of feature extraction and hash function learning. In this paper, we propose a novel algorithm that concurrently performs feature engineering and non-linear supervised hashing function learning. Our technical contributions in this paper are two-folds: 1) deep network optimization is often achieved by gradient propagation, which critically requires a smooth objective function. The discrete nature of hash codes makes them not amenable for gradient-based optimization. To address this issue, we propose an exponentiated hashing loss function and its bilinear smooth approximation. Effective gradient calculation and propagation are thereby enabled; 2) pre-training is an important trick in supervised deep learning. The impact of pre-training on the hash code quality has never been discussed in current deep hashing literature. We propose a pretraining scheme inspired by recent advance in deep network based image classification, and experimentally demonstrate its effectiveness. Comprehensive quantitative evaluations are conducted on several widely-used image benchmarks. On all benchmarks, our proposed deep hashing algorithm outperforms all state-of-the-art competitors by significant margins. In particular, our algorithm achieves a nearperfect 0.99 in terms of Hamming ranking accuracy with only 12 bits on MNIST, and a new record of 0.74 on the CIFAR10 dataset. In comparison, the best accuracies obtained on CIFAR10 by existing hashing algorithms without or with deep networks are known to be 0.36 and 0.58 respectively.
منابع مشابه
Deep Reinforcement Learning for Image Hashing
Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions independently and directly, while ignore the correlation between different hashing functions that can promote the retrieval accuracy greatly. Inspire...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کاملSSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
The hashing methods have been widely used for efficient similarity retrieval on large scale image datasets. The traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing method...
متن کاملTUCH: Turning Cross-view Hashing into Single-view Hashing via Generative Adversarial Nets
Cross-view retrieval, which focuses on searching images as response to text queries or vice versa, has received increasing attention recently. Crossview hashing is to efficiently solve the cross-view retrieval problem with binary hash codes. Most existing works on cross-view hashing exploit multiview embedding method to tackle this problem, which inevitably causes the information loss in both i...
متن کاملDeep Supervised Hashing with Triplet Labels
Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hashing codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017